Gap junctions and connexon hemichannels in human embryonic stem cells.
نویسندگان
چکیده
Intercellular communication via gap junctions is thought to play an important role in embryonic cell survival and differentiation. Classical studies demonstrated both dye and electrical coupling of cells in the inner cell mass of mouse embryos, as well as the development of restrictions against coupling between cells of the inner cell mass and surrounding trophectoderm. Here we demonstrate extensive gap junctional communication between human embryonic stem (ES) cells, the pluripotent cells isolated from the inner cell mass of preimplantation blastocysts. Human ES cells maintained in vitro expressed RNA for 18 of the 20 known connexins; only connexin 40.1 (Cx40.1) and Cx50 were not detected by reverse transcription-polymerase chain reaction. Cx40, Cx43, and Cx45 were visualized by immunofluorescence at points of contact between adjacent cells. Electron microscopy confirmed that neighboring cells formed zones of tight membrane apposition characteristic of gap junctions. Fluorescent dye injections demonstrated extensive coupling within human ES cell colonies growing on mouse embryonic fibroblast (MEF) feeder cells, whereas dye coupling between human ES cells and adjacent MEFs was extremely rare. Physiological recordings demonstrated electrical and dye coupling between human ES cells in feeder-free monolayers and between isolated human ES cell pairs. Octanol, 18-alpha-glycyrrhetinic acid, and arylaminobenzoates inhibited transjunctional currents. Dye uptake studies on human ES cell monolayers and recordings from solitary human ES cells gave evidence for the surface expression of connexon hemichannels. Human ES cells provide a unique system for the study of human connexin proteins and their potential functions in cellular differentiation and the maintenance of pluripotency.
منابع مشابه
Reconstitution of native-type noncrystalline lens fiber gap junctions from isolated hemichannels
Gap junctions contain numerous channels that are clustered in apposed membrane patches of adjacent cells. These cell-to-cell channels are formed by pairing of two hemichannels or connexons, and are also referred to as connexon pairs. We have investigated various detergents for their ability to separately solubilize hemichannels or connexon pairs from isolated ovine lens fiber membranes. The sol...
متن کاملConnexins and Diabetes
Cell-to-cell interactions via gap junctional communication and connexon hemichannels are involved in the pathogenesis of diabetes. Gap junctions are highly specialized transmembrane structures that are formed by connexon hemichannels, which are further assembled from proteins called "connexins." In this paper, we discuss current knowledge about connexins in diabetes. We also discuss mechanisms ...
متن کاملTargeting motifs and functional parameters governing the assembly of connexins into gap junctions.
To study the assembly of gap junctions, connexin--green-fluorescent-protein (Cx--GFP) chimeras were expressed in COS-7 and HeLa cells. Cx26-- and Cx32--GFP were targeted to gap junctions where they formed functional channels that transferred Lucifer Yellow. A series of Cx32--GFP chimeras, truncated from the C-terminal cytoplasmic tail, were studied to identify amino acid sequences governing tar...
متن کاملConformational changes in surface structures of isolated connexin 26 gap junctions.
Gap junction channels mediate communication between adjacent cells. Using atomic force microscopy (AFM), we have imaged conformational changes of the cytoplasmic and extracellular surfaces of native connexin 26 gap junction plaques. The cytoplasmic domains of the gap junction surface, imaged at submolecular resolution, form a hexameric pore protruding from the membrane bilayer. Exhibiting an in...
متن کاملOpposing gates model for voltage gating of gap junction channels.
Gap junctions are intercellular channels that link the cytoplasm of neighboring cells. Because a gap junction channel is composed of two connexons docking head-to-head with each other, the channel voltage-gating profile is symmetrical for homotypic channels made of two identical connexons (hemichannels) and asymmetric for the heterotypic channels made of two different connexons (i.e., different...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stem cells
دوره 24 7 شماره
صفحات -
تاریخ انتشار 2006